
Drudgery Relieving Commands for Mixed Initiative Planning

Anthony Barrett, Thomas Starbird

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, M/S 126-347
{Anthony.Barrett, Thomas.Starbird}@jpl.nasa.gov

Abstract
Not only has the number of JPL spacecraft launched per
year exploded over the past few years, but also the
spacecrafts’ behaviors are getting more complex as flyby
missions give way to remote orbiters, which in turn give
way to rovers and other in situ explorers. With this
complexity there comes an increased need for rapid
response to execution uncertainties arising from dynamic
partially-understood environments. Thus operations staffs
are forced to ever more rapidly generate and uplink short
sequences. For instance the Mars Exploration Rovers’
staffs had to analyze downlinked data and generate a new
set of commands every Martian day during the mission. To
speed up the activity planning process while keeping
operators fully in control, this paper describes a set of
simple useful commands for manually building plans
without leaning on the machinery of an automated planner.

Introduction
While past flight projects had the luxury of weeks to
generate a spacecraft sequence, present missions like the
Mars Exploration Rovers (MER) and future ones like the
Mars Science Laboratory (MSL) and Dawn need to build
sequences for an uplink within hours. While MER’s use of
the MAPGEN planning environment [Bresina et al. 2005]
improved the feasibility of rapidly generating a plan, there
were occasions when it hindered operators from making
straight forward changes. MAPGEN helped an operator
maintain the validity of a plan’s constraints, but it also
hindered an operator from invalidating constraints at any
time. This has forced operators to perform unintuitive plan
manipulations to make simple changes.

For example, it was common for the operator (the
Tactical Activity Planner in MER’s prime mission) to wish
to place a particular set of activities one after another, as a
starting point for a plan, while maintaining the ability to
change order later. Making such a chain of activities often
required introducing one activity at a time into its
approximate desired location in the timeline, and then
shifting it to a start time equaling the end time of the
previous activity. In other cases, features of the MAPGEN
environment could be used to create a chain of activities,
by placing them in the correct order manually and then
dragging the right-most one, causing the group to align
themselves one immediately after the other like a row of

boxcars. This method would work if the activities were
sorts that MAPGEN knew could not overlap. But that
knowledge could sometimes get in the way. Many
activities could not overlap communications activities, so
pushing an accumulating chain from after to before a
comm activity was not possible. One trick that was
sometimes employed was to delete the comm activity
temporarily to allow such movement. Such a deletion is
highly unintuitive, since the comm activities were
generally the only ones that were known ahead of time and
fixed in time, and since it would be a major mistake to
forget to re-insert the comm activity. As another example,
to swap the positions in the timeline of two activities, it
was often necessary for the operator to delete one activity
from the plan, move the other activity to its new position,
and then insert the deleted activity. These sorts of
unintuitive and somewhat roundabout steps ate up valuable
time in the tight operations schedule for producing a plan,
and added a bit to the specialized training needed by a user.

This paper takes a more human centered approach
toward mixed initiative planning, where operators
manipulate a plan instead of guiding a planner, letting them
make any plan manipulation including those that make a
plan inconsistent. Instead of enforcing consistency at all
times, this approach allows constraint breaking and helps
an operator manipulate a plan to improve its consistency.
As such, this paper presents three contributions. First it
shows how to add a constrained-move functionality to any
plan manipulation interface without including a general
purpose planner. Second it shows how a constrained move
can be used to manipulate plans even when they have
inconsistent constraints. Finally, it defines a number of
drudgery relieving commands identified during MER
operations and shows how to combine them with constraint
enforcement.

In the next section we introduce planning constraints
and describe how they are defined in terms of temporal
constraints. The next two sections show how constrained
move maintains a set of consistent constraints and how to
support satisfying violated constraints even when the full
set is inconsistent. Given this improvement to constrained
move, the subsequent sections define a set of drudgery
relieving plan manipulation commands, place this work in
the context of related work on mixed initiative planning,
and finally conclude.

Planning Constraints
In general, plans are represented as sets of temporally
constrained activities, where each activity may or may not
have an assigned start time depending on whether or not
there is a desire to maintain temporal flexibility. Typically
manual ground operations planners work with fixed start
times to simplify reasoning about a plan. This facilitates
drawing activities as boxes on a screen, which an operator
drags left/right to change their start times. For the purpose
of this paper, we will stick to fixed time planning as it is
typically used in graphical based manual plan editors. As
such, each activity in a plan has the eight following fields
in addition to activity types and parameters.

• start – the start time
• duration – how long the activity lasts
• temporals – explicitly required temporal constraints
• MUTEXs – other activities that are mutually exclusive
• pinned – boolean for freezing at current start time
• constraints – valid constraints with transitive closure
• earliest – inferred earliest possible start time
• latest – inferred latest possible end time

While an activity’s start, duration, pinning, earliest,
and latest fields contain integers, its MUTEXs field is a
possibly empty set of pointers to other plan activities that
are not allowed to overlap with it. Finally, temporals and
constraints contain sets of constraints with the form

(A, [lowest, highest], B),
where A is the current activity and activity B is temporally
constrained such that

A.start + lowest ≤ B.start ≤ A.start + highest.
While most of the fields are manually set and altered,

the last three are computed. Essentially, the MUTEXs,
temporals, and pinning combine to set the initial set of
constraints, and an algorithm for solving the all-pairs
shortest path problem computes the transitive closure over
a simple temporal network [Dechter 2003]. The Floyd-
Warshall algorithm computes such a closure in O(n3) time.

For instance, Figure 1 illustrates four activities with
three temporal constraints that make them occur serially
with the second occurring within a time bound after the
first, and the three extra constraints are from the temporal
closure. Actually each illustrated constraint refers to two
constraints. In the case of the rightmost constraint in the
diagram, the two constraints are

(C,[C.duration, inf], D) ∈ C.temporals and

(D, [−inf, −C.duration], C) ∈ D.temporals.

More precisely, each B pointed to in A.MUTEXs
determines a constraint

(A, [−inf,−B.duration], B) or (A, [A.duration, inf], B)
A succeeds or precedes B respectively. Since pinning
explicitly freezes an activity’s start time, an activity A’s
pinned flag’s truth would turn into constraint

(e, [A.start, A.start], A),
where “e” refers to an initial epoch at time “0” such that
activity A starts A.start time units after “e”. Finally
A.temporals are added to A.constraints without
modification, and the result is used to compute the
transitive closure.

Active Constraint Enforcement
The arguably most used feature of MAPGEN was its active
constraint enforcement. This feature lets an operator
change a selected activity and has other activities change to
enforce the constraints. For instance, an operator moves
activities as shown in Figure 2. At the start (t1) the
operator selects the middle two activities and subsequently
drags them to the right. During the drag the third activity
meets the fourth (t2) and active constraint enforcement
then starts moving the fourth activity also. If the operator
keeps dragging the selected activities, enforcing the
required proximity between the first two activities will start
moving the first activity too (t3).

At first glance, active temporal constraint enforcement
looks rather complex in that there is a network of activities
and constraints, and constraint enforcement requires
determining which activities to move to keep current
constraints satisfied. In actuality, the process is fairly
simple after computing the transitive closure of temporal
constraints. Given this closure, Algorithm 1 implements
moves with active constraint enforcement in O(sn) time,

For each A ∈ SELECTED {
 A.start ← A.start + ∆ ;
 For each (A,[Lowest,Highest],B) ∈ A.constraints do
 If B ∉ SELECTED then
 B.start ← max(A.start + Lowest,
 min(A.start + Highest, B.start)) }

Algorithm 1. Moving selected activities by ∆ (positive
or negative) while maintaining constraints

selected
t1:

t3:

t4:

t2:

Figure 2. Four instants in a constrained move for a
selected set of activities

Constraints from transitive closure:

Figure 1. Example set of four temporally constrained
activities and transitive constraint closure

A B C D

where s and n denote the number of selected activities and
the total number of activities.

The main points to observe is that the transitive closure
short circuits the need to traverse the graph of constraints
and activities to determine which activities to move. This
traverse is captured in the closure. Thus iterating through
A.constraints finds all activities that need to be moved,
and the new values are computed in the max-min equation.
Essentially the max() moved activities to the right to
maintain the lower bounds, and the min() moves them to
the left to maintain the upper bounds.

Dragging and Nudging
At its most basic, an operator alters an activity’s start time
earlier or later by either dragging it or nudging it to the left
or right respectively. In the case of nudging, pressing a
key will move the activity by a preset step size. Dragging
moves the activity by some arbitrary delta depending on
how far the activity is dragged. While these features are
endemic to any graphical plan editing interface, combining
this with active constraint enforcement results in limiting
how far an activity might be dragged. For instance,
suppose that the leftmost activity in Figure 2 was pinned to
its current location. In this case the illustrated drag would
stop at time t3 due to the constraints keeping the activities
from moving.

Algorithm 2 shows how simple it is to correctly
constrain dragging and nudging in O(s) time after
computing the transitive closure. One of the side effects of
computing the transitive closure with respect to an initial
epoch “e” is knowledge of the earliest and latest times
when an activity can start. With this information clipping
delta to restrict a drag or a nudge is a matter of reducing its
absolute value to keep all of the selected activities from
moving out of their earliest-latest start time bounds. All of
the other activities are kept in their start time bounds by
virtue of the transitive closure.

Jumps
While dragging and nudging suffice for moving activities
around, they are also relatively imprecise in that it is easy
to nudge one too many times or drag an activity too far or
not far enough on an activity display. For this reason, we
introduce other moves to qualitatively interesting points.
The first such move is to “jump” a set of selected activities
to the left or right until any loose constraint becomes taut,
which will increase the number of moving activities on the
next jump. For instance, the first three lines in figure 2
correspond to jumps.

Jumping selected activities forward in time is a matter
of computing the desired delta with Algorithm 3, limiting

delta with Algorithm 2, and then performing the move with
Algorithm 1. Given these algorithms, a jump can be
performed in O(sn) time, and the steps for computing left
jumps have the same structure and time complexity.

Hops
While jumping is useful, it is quite conceivable that
jumping will move a set of activities too far. In this event,
another qualitative movement called a “hop” moves a set
of activities until any two temporally ordered time points
become simultaneous. With this move any two unrelated
activities can be moved back to back or to start/end at the
same time.

Algorithm 4 shows how to compute the deltas ∆L and ∆R
for left and right hops respectively. It starts by computing
the deltas for left and right jumps and then reduces the
magnitudes of these deltas by analyzing the time points
from earliest to latest to find the two closest points that
would be made simultaneous by moving left/right. The
time complexity of this algorithm is O(sn) due to
computing the jump deltas and O(nlog(n)) for reducing the
magnitudes, due to a need to order the time points.

Building Plans
So far the focus here has been on activity movement, but
the previously described MER experience also points to
simple drudgery relieving commands when adding
activities, but they are manual. While most approaches
toward planning focuses on representing activities and how

Let ∆L ← −leftJump() and ∆L ← rightJump();
Let POINTS be the points that start/stop activities;
Let L be the tuple 〈t ← 0, stay ← false, move ← false〉;
Let R be the tuple 〈t ← 0, stay ← false, move ← false〉;
For each P ∈ POINTS ordered from first to last do {
 If P.time ≠ R.time then {
 L ← R; R.stay ← false; R.move ← false; R.t ← P.t; }
 If P starts/stops an activity that will move
 then R.move ← true
 else R.stay ← true;
 If L.move and R.stay then ∆R ← min(∆R, R.t − L.t);
 If R.move and L.stay then ∆L ← min(∆L, L.t − R.t); }
Return ∆R or −∆L depending on right or left hop

Algorithm 4. Computing ∆ for hopping left or right to a
point where two time points will change ordering.

Let ∆ ← infinity;
For all A ∈ SELECTED do {
 ∆ ← min(∆, A.latest − A.start);
 For each (A,[Low,High],B) in A.constraints do
 If (B ∉ SELECTED & A.start + Low < B.start) then
 ∆ ← min(B.start − (A.start + Low), ∆) }

Algorithm 3. Computing ∆ for jumping activities right
(later) to the point where the next stationary activity
starts moving

For all A ∈ SELECTED {
 LIMIT ← max(A.earliest,
 min(A.latest, A.start + ∆)) − A.start;
 if ∆ < LIMIT ≤ 0 or 0 ≤ LIMIT < ∆ then ∆ ← LIMIT }

Algorithm 2. Limiting ∆ based on activity constraints

to automatically add and schedule them to achieve goals,
this approach becomes problematic when the precise
resource needs, preconditions, and effects of activities are
not known at plan time. This was often the case during
early operations – a time when the activities were often
specialized to squeeze as much performance as possible
from a rover. Typically activity definitions evolve over
time to have numerous parameters that combine in
complex ways to determine preconditions, effects, and
resource needs.

While the ASE experience [Chien et al. 2005] on the
EO1 satellite showed that modeling these activities for
automated planning is possible, ASE was not developed
until after EO1 had been in orbit for a year. During early
operations the drive is to build plans manually and
simulate them in order to determine correctness as the
planned activities get progressively better defined. Still,
even without complete activity definitions, coarse
properties like timing and mutual exclusion relationships
between can be defined and used early in the planning
process.

Adding Activities and Constraints
There are many ways to manually add activities to a plan,
but they all derive from a copy/paste metaphor where the
activities are copied from an activity dictionary or from
elsewhere in the plan. The main point where they differ
revolves around how to paste them into a plan. The
simplest way is to require explicit manual placement of the
pasted activity, but that can become a bit arduous as
described in the introduction. Algorithm 5 shows how to
perform a simple insertion of activities from left to right in
constant time, and the algorithm for adding from right to
left would be identical except for the computation of
B.start.

Adding constraints is a matter of selecting activities and
choosing how to constrain them by adding temporal
constraints to each activity’s temporals set. During early
MER operations, two useful drudgery relieving commands
related to adding constraints were determined: freeze-
temporal-relations to freeze the relative start times of a
selected set of activities and freeze-ordering-relations to
freeze the ordering of start and endpoints of a selected set
of activities. In the case of a freeze-temporal-relations
command, all that is needed is to add constraints between
any one selected activity and all of the others to fix the
relative start times of the activities. Freezing the ordering
requires a little more effort to constrain the order of each
pair of selected activities. In both cases the complexity of
these commands is O(n3) due to their requiring a transitive
closure computation. Related unfreeze commands were

also determined to be useful and are simply a matter of
removing the constraints added by a freeze and then
updating the transitive closure. Thus these commands also
exhibit an O(n3) time complexity.

Supporting Inconsistent Constraint Sets
While freezing is guaranteed to add constraints that are
consistent with the current plan, it is possible to add
constraints that are not consistent. An activity can be
inserted on top of another to invalidate a MUTEX relation
or a temporal constraint might be added that cannot be
satisfied while enforcing all of the other temporals. While
we can specify an inconsistent constraint, adding it to the
plan invalidates the transitive closure, and determining
which constraints are at fault, to find a maximally sized
consistent subset, is a nontrivial problem.

By far the easiest way to deal with this problem is to
only enforce constraints that currently hold. In this event
Algorithm 6 is used to determine which constraints to
actively enforce depending on whether or not the user
wishes to enforce temporal constraints and/or mutual
exclusion constraints. Notice that in each case a constraint
is added to CONSTRAIN only if it already holds. Thus an
operator can select which valid constraints to enforce and
then update the enforced constraints as subsequent activity
movement makes them hold, and an enforcement update
will never unexpectedly move an activity.

In general, this approach to constraint enforcement lets
the operator choose which constraints to actively enforce
and then facilitates manipulating a plan to monotonically
reduce the number of unsatisfied constraints. In all cases
the operator is given the power to break a constraint at any
time and then the tools to remove the drudgery from
repairing the breaks.

Computing Transitive Closures
As previously mentioned, the simplest way to compute the
transitive closure of a set of temporal constraints involves

When SELECTED has only one activity A
Add new activity B with B.start ← A.start + A.duration
SELECTED ← {B}

Algorithm 5. Chain-anchor-first to add activities from
left to right.

Let CONSTRAIN ← { };
For each activity A do {
 If enforcing temporals then
 For each (A,[Low,High],B) ∈ A.temporals do
 If Low ≤ B.start − A.start ≤ High then
 Add (A,[Low,High],B) to CONSTRAIN;
 If enforcing MUTEXs then
 For each B ∈ A.MUTEXs do
 If A starts before B and does not overlap then
 Add (A,[A.duration,inf],B) to CONSTRAIN;
 If A.pinned = true
 then Add (e,[A.start,A.start],A) to CONSTRAIN
 else Add (e,[0,inf],A) to CONSTRAIN }
Update each activity’s constraints, earliest, and latest

values with results of calling Floyd-Warshall algorithm
to compute transitive closure of CONSTRAIN.

Algorithm 6. Updating enforced constraints.

an adaptation of the Floyd-Warshall algorithm [Dechter
2003]. For the case of our work, this adaptation takes the
form of Algorithm 7, where the O(n3) time complexity
comes from the third nested FOR loop. The first two loops
initialize an n by n distance matrix where n is the number
of activities. They work by first assuming infinite
distances between activity start times and then reducing
these distances for each temporal constraint. The third
nested loop is the heart of the Floyd-Warshall algorithm,
which computes the transitive closure of the distances to
solve the all-pairs-shortest-path problem. Given this
solution, the fourth loop sets each activity’s earliest and
latest possible start times, and the fifth loop sets the
relative constraints among activities.

For example, Figure 3 denotes the constraints alluded to
back in Figures 1 and 2, where the activity durations are 5
time units long and the start time of activity B is less than
10 time units after the start time of activity A. All
activities start after a set epoch time “e”, resulting in the
[0,∞] arcs. Finally, the [5,∞] arcs come from the
requirement that activities C and D are consecutive after B.

Given our example, the first two loops compute the

drow,column distance matrix in Figure 4. Explaining this
computation comes from the observation that a constraint
(Ai, [low,high], Aj) denotes the two equations:

Ai.start − Aj.start ≤ high and
Aj.start − Ai.start ≤ -low.

Thus this matrix has zero elements on the diagonal since
the distance for an activity to itself is zero, and the
elements above the diagonal denote limits from highs and
the elements below the diagonals denote negatives of limits
from the lows.

While the above matrix encodes all of the information

from CONSTRAIN, computing the transitive closure with
Algorithm 7’s third loop to get Figure 5 makes this
information easier to work with. For instance, the original
constraint was for activity C to occur after the epoch time,
but computing transitive closure shows us that C cannot
occur in less than ten time units after epoch. As the fourth
loop shows, each activity’s earliest and latest start times
can be quickly read off of the first column and row
respectively, and the fifth loop computes the constraints in
Figure 6.

Actually, Figures 3 and 6 are not precisely correct due
to the fact that they only show half of the constraints.
Essentially, for each (Ai, [low,high], Aj) constraint shown
in the figures there is annother (Aj, [-high,-low], Ai)
constraint in the graph. These constraints add no
information to the transitive closure computations, but they
are computed by Algorithm 7 and required by the
algorithms that implement constrained moves and other
drudgery relieving commands.

0 -5 ∞∞0

∞0 -5 ∞0

∞∞0 -5 0

∞∞10 0 0

∞∞∞∞0

e B A C D

e

B

A

C

D

Figure 4. Matrix representation drow,column of
constraints among activity start times.

For i ← 1 to n do
 For j ← 1 to n do
 if i = j then dij ← 0 else dij ← inf;
For each (Ai, [low,high], Aj) ∈ CONSTRAIN do {
 dij ← min(high, dij); dji ← min(−low, dji) };
For k ← 1 to n do
 For i ← 1 to n do
 For j ← 1 to n do dij ← min(dij, dik + dkj);
For i ← 2 to n do {
 Ai.constraints ← { }; Ai.earliest ← −di1; Ai.latest ← d1i };
For i ← 2 to n do
 For j ← 2 to n do
 If |dij| ≠ inf or |dji| ≠ inf then
 Add (Ai, [−dji,dij], Aj) to Ai.constraints;

Algorithm 7. Computing transitive closure of
CONSTRAIN’s constraints, where A1 is “e”

e

[5, 10] [5, ∞] [5, ∞]

[0, ∞]

B A C D
[0, ∞] [0, ∞]

[0, ∞]

Figure 3. Example set of constraints among activity
start times

0 -5 -10 -15 -15

∞0 -5 -10-10

∞∞0 -5 -5

∞∞10 0 0

∞∞∞∞0

e B A C D

e

B

A

C

D

Figure 5. Matrix representation of constraints among
activity start times after computing transitive closure

Group Manipulations
With our approach toward breaking and repairing
constraints, we can now define a number of higher level
drudgery relieving commands for manipulating groups of
activities. In order to keep each command’s definition as
simple as possible, it is quite feasible for each of these
commands to fail if disallowed by the currently enforced
constraints, but then succeed upon relaxing constraint
enforcement.

Activity Set Manipulations
The simplest of the group manipulations just iterates over a
set of selected activities and moves them into some
specific pattern. Essentially three such patterns were
determined to be useful during MER operations:
synchronize activity start times, riffle activities to push
them as far as possible together while maintaining their
original ordering, and synchronize activity end times.
Pictorially, examples of these three manipulations appear
in Figure 7. Notice how riffle is very similar to
synchronize start times, with the exception that some set
step size is added to the start times to maintain activity
ordering.

Algorithm 8 shows how simple any of these commands

can be. It just finds the time to synchronize to and
performs a series of moves with constraint enforcement. In
this case the command can fail if one of the selected
activities cannot be moved to the start time due to an
enforced constraint, at which point an operator can just
relax constraint enforcement if needed.

There are possibilities for different versions of this
command that break as few constraints as possible instead
of failing. Such versions might be more useful, but it
would be harder to anticipate the effects of such alternative
versions due to their unexpectedly breaking constraints. A
simpler version of this command would turn off all
constraints, move, and then turn them back on. Although
there is a computational problem with that approach in that
turning constraints on requires an O(n3) transitive closure
computation. As it stands, this algorithm takes O(sn) time.
In general, there is a tradeoff between a version’s power,
time complexity, and understandability. The primary
desire here is to keep commands as simple and fast as
possible. In any case, this command can be forced to
succeed by turning constraint enforcement off.

Cluster Set Manipulations
Quite often a selected set of activities can be separated into
overlapping subsets as shown at the top of Figure 8. By
identifying the gaps we can determine overlapping clusters
of activities, and these overlaps often denote a desired
absolute temporal relationship between interacting
activities. Cluster set manipulations move these activities
around while maintaining the absolute temporal
relationships of overlapping activities.

Given this goal to maintain overlaps, cluster

manipulations start with Algorithm 9 to compute the
clusters in O(slog(s)) time, where the temporal complexity
comes from sorting the 〈T, A〉 elements. This algorithm
performs this sort in order to sweep over the activities from
left to right, identifying the subsets that do not overlap.
The SELECTEDi subsets are progressively ordered as a
side effect of the sweep direction.

[5,10] [5, ∞] [5, ∞]

B A C

e

D

[0, ∞]
[5, ∞] [10, ∞]

[15, ∞]

[10, ∞]
[15, ∞]

[10, ∞]

Figure 6. Resultant transitive closure constraints

Figure 8. Three clusters of selected activities with
three cluster manipulations: (a) splay by gap size, (b)
cycle left, and (c) cycle right

a)

b)

SELECTED1 SELECTED2 SELECTED3

c)

synch-starts riffle synch-ends

Figure 7. How three simple manipulations move
selected activities

Let S ← A.start of the earliest A ∈ SELECTED;
If (S < B.earliest for some B ∈ SELECTED or
 two selected activities cannot start simultaneously)
 then return failure
 else for each B ∈ SELECTED do
 move {B} by S − B.start;

Algorithm 8. Synchronizing the start times of selected
activities without breaking constraints.

Once the clusters are determined, a manipulation
command becomes fairly trivial. For instance, Algorithms
10 and 11 perform the splay and cycle-left manipulations
as they are illustrated in (a) and (b) of Figure 8. In both
cases the computations start with identifying clusters, then
they test to determine if the activity movements are
possible given the currently enforced constraints, and
finally they perform the constrained moves. In both
algorithms StartTime() and EndTime() compute the times
when a cluster’s first activity starts and last activity ends
respectively in O(si) time for each SELECTEDi. In total,
each algorithm takes O(sn) time.

Just like the activity set manipulations, cluster set
manipulations have varying effects depending on the
enforced constraints. Each can fail if it will violate an
actively enforced constraint, and each is guaranteed to only
move activities in the currently selected set if no
constraints are being enforced. If a manipulation
command can succeed with the currently enforced

constraints, then it may move more than the selected set of
activities just as a constrained move would have.

Future Manipulations
So far the described activity movement manipulations have
taken O(sn) time, which is fast enough to appear
instantaneous when manipulating a day’s worth of
activities through a GUI. There are three other
manipulations identified during early MER operations that
we have yet to identify the appropriate algorithm for due to
their complexity and interaction with constrained move:

• Spread-obey-temporal – from left to right spread
activities later to resolve constraints without changing
ordering;

• Repair-if-possible – same as spread-obey-temporal,
but can change ordering of selected activities; and

• Repair-or-discard – same as repair-if-possible, but can
remove activities.

The first two commands’ implementations look like
fairly simple constraint additions followed by a transitive
closure computation, but their computational complexity
rapidly explodes to NP complete problems when
considering which ordering constraint to add to enforce
each MUTEX relation. The last manipulation is even
ambiguously defined. The question is, “Which activities
should be discarded?” Obviously discarding all selected
activities and their constraints resolves all broken
constraints, but that is not likely to be the operator’s intent.

By virtue of their ambiguity and time complexity, these
commands may not be ultimately useful. Still, they were
identified and their intuitive definitions provide a place for
the more powerful automated planners to infiltrate into a
plan manipulation tool.

Related work
As this paper’s title suggests, this work is most related to
other mixed initiative planning systems. Examples of
these systems include MAPGEN [Bresina et al. 2005] to
assisted operators in planning a MER rover’s day on Mars,
VAL [Howey et al. 2004] with experiments on a Beagle 2
style Mars lander domain, and PASSAT [Myers et al.
2003] to plan missions in a special operations forces
domain. Given the number of hard to compare mixed
initiative planning systems, Cortellessa and Cesta (2006)
developed an experimental approach toward evaluating a
mixed initiative system, which focused on two issues: how
to make the underlying problem solver better serve users
and how to empower users to enhance there active
involvement in the planning process.

Our work challenges an assumption made by most other
related systems and exposed by this evaluation, an
assumption that we start with an automated planner when
building an mixed-initiative system. Instead of starting
with automated planners and focusing on how to make
them work with users, this work starts with a set of

Let i ← 1, j ← 0, and
 POINTS ← {〈T, A〉 | A in SELECTED and

 T ∈ {A.start, A.start+A.duration}},
Sort POINTS by increasing T with T = A.start points last

for a given T;
For each 〈T, A〉 ∈ POINTS in sorted order do {
 If T = A.start
 then { put A into SELECTEDi ; j ← j + 1; }
 else j ← j − 1;
 If j = 0 then i ← i + 1; }

Algorithm 9. Identifying the overlapping clusters of
selected activities.

Identify the M clusters of SELECTED;
If (any move below would be constrained by A.earliest

or A.latest for any A ∈ SELECTED)
 then return failure;
For i ← 2 to M do {

move SELECTEDi by EndTime(SELECTEDi−1) −
StartTime(SELECTEDi) + gapSize}

Algorithm 10. Splaying a set of clusters by gapSize by
shifting left or right depending on gapSize.

Identify the M clusters of SELECTED
Let S ← StartTime(SELECTED1) −

StartTime(SELECTED2)
If (any move below would be constrained by A.earliest

or A.latest for any A ∈ SELECTED)
 then return failure;
move SELECTED1 by

EndTime(SELECTEDM) − EndTime(SELECTED1)
For i ← 2 to M do move SELECTEDi by S

Algorithm 11. Cycling clusters of selected activities to
the left, moving the first cluster to the end.

deterministic drudgery relieving commands that users
would like to see, and shows O(sn) algorithms that
automate them. There is no search or search heuristics
underlying this planning automation, and a given command
will always have the same effect.

In terms of capability, MAPGEN is the most closely
related system to this work, but our approach to active
constraint enforcement makes no assumption that all
constraints are valid and consistent. Our approach only
only enforces a subset of the valid constraints, and this
subset can be either reduced or enlarged at any time with
an O(n3) algorithm, where this algorithm can only enlarge
the set to include all currently valid constraints.

Conclusions
The experience of constructing daily plans for the MER
rovers represents a valuable case study for the role of
different levels of aid that software can give the human
planner. Much of the operator’s time on MER was spent
on low-level manipulations of the plan’s elements. The
algorithms offered in this paper strike a balance, having
software automatically make changes to the plan, yet
leaving the operator in complete control. Each algorithm
performs an action that is easily understood by the
operator, an attribute that is vital for remaining in control,
and each relieves the operator of some low-level drudgery.

The constrained move functionality was very much
used and liked by MER operators. The algorithms in this
paper give a variety of such functions without the need for
a general purpose planner in the software. In addition, the
algorithms do not assume that at every stage the entire plan
is consistent. This feature gives the operator the freedom
to concentrate on one portion of a plan and get use from
the algorithms even if another part of the plan is broken.

One other class of drudgery removing operations not
addressed here involves those that add support activities.
For instance, the MER operators found the automatic
addition and deletion of CPU turn off commands. While
one can easily point to this functionality as a motivation for
a planner, it can also be implemented using a relatively
simple algorithm that simulates a plan and applies a few
simple expert system rules.

Finally, this work applies to missions where operators
work under tight deadlines and need to maintain a detailed
understanding of the developing plan. Such happens when
a mission has a large amount of operational uncertainty.
Examples of such missions include managing rovers on
Mars, astronauts in space, and probes orbiting asteroids
with complex gravitational fields. This work applies less
when a reduced uncertainty facilitates planning a week in
advance. Examples of such missions include planetary
orbiters and remote encounters. In this class of mission,
the operator can run advanced optimization software and
then take the time to develop an understanding of the
generated plan prior to uplinking it to the target spacecraft.

Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The
authors would also like to thank James Kurien and Michael
McCurdy for discussions contributing to this effort.

References
Bresina, J., Jónsson, A., Morris, P., and Rajan, K. 2005.
“Mixed-Initiative Planning in MAPGEN: Capabilities and
Shortcomings.” In Proceedings of the ICAPS Workshop on
Mixed-Initiative Planning and Scheduling. Monterey, CA.

Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G.,
Castano, R., Davies, A., Mandle, D., Frye, S., Trout, B.,
D’Agostino, J., Shulman, S., Boyer, D., Hayden, S., Sweet,
A., Christa, S. 2005. “Lessons Learned from Autonomous
Sciencecraft Experiment.” In Proceedings of Autonomous
Agents and Multi-Agent Systems Conference. Utrecht,
Netherlands.

Cortellessa, G. and Cesta, A. 2006. “Evaluating Mixed-
Initiative Systems: An Experimental Approach”. In
Proceedings of the 16th International Conference on
Automated Planning & Scheduling (ICAPS-06). Cumbria,
UK.

Dechter, R. 2003. Constraint Processing. San Francisco,
CA.: Morgan Kaufmann.

Howey, R., Long, D., and Fox, M.2004. “VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL.” In Proceedings of 16th IEEE
International Conference on Tools with Artificial
Intelligence, Boca Raton, FL.

Myers, K., Jarvis, P., Tyson, W., and Wolverton, M. 2003.
“Mixed-initiative Planning in PASSAT.” In Proceedings of
the 13th International Conference on Automated Planning
and Scheduling – Demonstration Track. Trento, Italy.

